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Abstract—Next POI recommendation has been studied extensively in recent years. The goal is to recommend next POI for users 

at specific time given users’ historical check-in data. Therefore, it is crucial to model both users’ general taste and recent sequential 

behaviors. Moreover, different users show different dependencies on the two parts. However, most existing methods learn the 

same dependencies for different users. Besides, the locations and categories of POIs contain different information about users’ 

preference. However, current researchers always treat them as the same factors or believe that categories determine where to 

go. To this end, we propose a novel method named Personalized Long- and Short-term Preference Learning (PLSPL) to learn 

the specific preference for each user. Specially, we combine the long- and short-term preference via user-based linear 

combination unit to learn the personalized weights on different parts for different users. Besides, the context information such as 

the category and check-in time is also essential to capture users’ preference. Therefore, in long-term module, we consider the 

contextual features of POIs in users’ history records and leverage attention mechanism to capture users’ preference. In the short-

term module, to better learn the different influences of locations and categories of POIs, we train two LSTM models for location- 

and category-based sequence, respectively. Then we evaluate the proposed model on two real-world datasets. The experiment 

results demonstrate that our method outperforms the state-of-art approaches for next POI recommendation. 

Index Terms—Next POI recommendation, Attention mechanism, User preference, Personalization 

——————————      —————————— 

1 INTRODUCTION

ECENT years have witnessed significant development 
of location-based social networks (LBSNs), such as 

Foursquare, Gowalla, Facebook Place, and Yelp, etc. Partic-
ularly, users can share their locations and experiences with 
their friends by checking-in points-of-interest (POIs). A 
check-in record usually contains the visited POI with its as-
sociated contexts that describe user movement, including 
the timestamp, GPS and semantics (e.g., categories, tags, or 
comments). The massive check-in data generated by mil-
lions of users in LBSNs provide an excellent opportunity to 
explore the intrinsic pattern of user check-in behavior [1-4]. 
For example, we can recommend POIs for users based on 
their check-in records, which not only help users to explore 
their interested places but also benefit for business to attract 
more potential customers [5, 6, 58].  

The check-in sequences implicitly reflect users’ prefer-
ence on POIs and the daily activity patterns of users [7, 8]. 
Recently, next POI recommendation has received significant 
attention in research community [9-11, 58]. Excepted for us-

ers’ general preference (long-term preference), next POI rec-
ommendation additionally considers the sequential patterns 
of users’ check-in records (short-term preference).  

Our work is motivated by the following inspirations: 
 (1) Users’ long- and short-term preference on POIs co-

determine where they will go next time. Therefore, it is nec-
essary to consider the two factors together. In addition, dif-
ferent users show different dependencies on long- and 
short-term impact. Some users may rely more on long-term 
preference when making decisions, while others rely more 
on short-term preference. For example, one user may like 
outdoor entertainments from long-term preference aspect. 
But for some reason, he only goes outside several times dur-
ing the most recent period. Then if he relies more on long-
term preference, we will recommend some outdoor places 
for him. Otherwise, we will recommend him some indoor 
activities. Thus, it is crucial to learn specific weights on long- 
and short-term preference for different users to achieve per-
sonalized recommendation. However, current researchers 
always fail to consider users’ personalized dependencies on 
long- and short-term preference.  

(2) The check-in behaviors of users are autonomous and 
elusive, leading it difficult to capture users’ long-term regu-
larity. At different time and circumstances, users may prefer 
different POIs. Therefore, to better learn users’ long-term 
preference for personalized recommendation, it is im-
portant to consider the context information of POIs. For ex-
ample, users will go to restaurants at the time to have diner. 
Then after having diner over one hour, they will go to a pool 
for swimming or a park for relaxing.  

(3) The activity purpose and check-in locations are insep-
arable. Excepted for the location-based sequences, the cate-
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gory-based sequences are also essential to exploit the cate-
gory information when modeling users’ behaviors. Users 
may prefer different categories at different time. We conduct 
some statistical analysis of the dataset and take some ex-
amples to observe the temporal regularity of the categories. 

Fig.1 (a) shows the check-in numbers of different catego-
ries at different time. We split the 24 hours into several 
fragments to show the statistical regularity. We can ob-
serve that the distributions of check-in time for different 
categories are different. For example, the most frequent 
time for users to check in at the coffee shop is 11: 00.am -
13: 00.pm. They may just finish the lunch and then take a 
coffee to refresh themselves. The most frequent time for 
bar is 23: 00.pm - 4: 00.am, which is also in line with peo-
ple’s daily behaviors to relax and drink. Fig.1 (b) shows the 
distributions of check in categories at different time slots. 
We can also observe the difference of the distributions of 
categories at different time. For example, at 11: 00.am - 13: 
00.pm, users mostly check-in at coffee shop, home, and 
Gym/Fitness Center. At 23:00.pm-1:00.am, users usually 
go to the bar or at home. We can conclude that different 
categories have different distributions of time, and differ-
ent time slots have different distributions of categories 
Thus, the temporal sequence of categories in users’ check-
in history is also essential to learn users’ behaviors.  

To this end, we propose a Personalized Long Short-term 
Preference Learning (PLSPL) model for next POI recom-
mendation. Concretely, we integrate the long- and short-
term preference together with user-based linear combina-
tion unit to capture users’ personalized dependencies on the 
two parts. In long-term module, we learn contextual fea-
tures of POIs in their check-in history and utilize attention 
mechanism to better capture users’ long-term preference. In 
short-term module, we leverage LSTM to model the short-

term sequential preference of users. Specially, we learn loca-
tion-level and category-level preference by training two par-
allel LSTM models. Finally, we fuse the long-term and short-
term together in a personalized way to obtain the final prob-
abilities of candidate POIs.  

The main contributions of this paper are summarized as 
follows: 

1) We propose a unified model to learn the long-term 
and short-term preference of users. Specially, we 
consider personalized dependencies on long- and 
short-term preference for different users by user-
based linear combination unit. 

2) For long-term preference, we extract the contextual 
features of POIs in users’ check-in history and utilize 
attention mechanism to further characterize the gen-
eral taste of users. 

3) For short-term preference, we integrate the location-
level and category-level preference together by two 
parallel LSTM models to better capture users’ se-
quential behaviors. 

Comparing with our preliminary work in [58], we have 
made some improvements as follows: 

1) In order to improve the personality of our recom-
mendation, we introduce a new user-based linear 
combination unit in this paper. By learning person-
alized weights of the long-term and short-term mod-
ules, our model can better captured the specific pref-
erences for different users. To explain the weights of 
the long and short term to the final decision, we also 
provide a user study to analysis the different influ-
ences of the long-term and short-term sequences.  

2) More detailed steps and explanations of the consid-
eration behind the designs of all the parts in our pro-
posed method are provided. For example, we give 
more description in the embedding layer and atten-
tion mechanism in long-term module; the LSTM 
model and feature combination in short-term mod-
ule; the fusion of each module in the output layer. 

3) We conduct more comparison experiments and dis-
cussions compared with [58]. We compare our 
method with more baselines to demonstrate the ad-
vantage of our method and provide more compre-
hensive explanations about the results. In additions, 
more discussions about each part of our model are 
provided in this paper such as the impact of the fac-
tors in each module, the number of users’ records 
and the dimensions of locations and categories. 

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the related work about next 
POI recommendation. Section 3 describes our task and some 
definitions briefly. The overview of the proposed model is 
introduced in Section 4. Then we give the experimental re-
sults and some discussions in Section 5. Finally, we make a 
conclusion on our study in Section 6. 

2 RELATED WORK 

In this section, we give a brief review about next POI recom-
mendation. Different from general location recommenda-
tion that mainly exploit users’ preferences on POIs, next POI 
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Fig.1. The statistical analysis of the dataset 
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recommendation additionally considers the sequential in-
formation of users’ check-in history. In this part, we firstly 
introduce the general location-based recommendation 
methods. Then we introduce the related works on next POI 
recommendation. 

2.1 Location-based Recommendation 

Location recommendation has been widely studied in lo-
cation-based services. Generally, the most well-known ap-
proaches of personalized recommendation are Collabora-
tive Filtering (CF) [12, 13], Matrix Factorization(MF) [14, 
15]. Collaborative Filtering method firstly mines similar 
users from users’ check-in history. Then recommend POIs 
according to similar users’ check-in records. CF-based 
method has been demonstrated as an effective approach 
for recommender system. However, this method suffers 
the data sparsity problem leading it difficult to identify 
similar users. Matrix Factorization based methods have be-
come the effective approaches to collaborative filtering. 
The basic idea of MF methods is to factorize the user-item 
matrix into two latent matrices which represent the char-
acteristics of users and items.  

Compared with other recommendation systems, loca-
tion recommendation has richer contextual information 
such as temporal, spatial, textual, visual, social, senti-
mental information and so on. Zhao et al. [16] proposed a 
Geo-Temporal sequential embedding rank (Geo-Teaser) 
model for POI recommendation. In temporal embedding 
module, they captured the contextual check-in information 
and the temporal characteristics of POIs. In geographical 
module, they learn the geographical influence via a hierar-
chical pairwise preference ranking model. Except for the 
rich contextual information, the data scarcity problem also 
brings challenges to POI recommendation. To tackle the 
data scarcity and various context problem, Yang et al. [17] 
proposed a semi-supervised learning framework named 
Preference And Context Embedding (PACE) jointly learn-
ing the embeddings of users and POIs. In this model, they 
built two context graphs: user graph based on friendship 
and POI graph based on geographical distance among 
POIs. Then they addressed the data scarcity and various 
context problem by enforcing smoothness among neigh-
boring users and POIs on the two context graphs. On the 
other hand, they leveraged neural networks to model non-
linear complex interactions between users and POIs. To 
tackle the extreme sparsity of user-location matrices when 
using traditional matrix factorization method, Lian et al. 
[18] proposed GeoMF ++ model. This model integrated ge-
ographical modeling and implicit feedback-based matrix 
factorization, so that geographical modeling can be incor-
porated into matrix factorization. Qian et al. [19] proposed 
a spatiotemporal context-aware and translation-based rec-
ommender framework. They leveraged knowledge graph 
embedding to learn the relationship among users, POIs, 
and spatiotemporal contexts. 

The complex nature of user interest and the sparsity of 
check-in data bring significant challenges for POI recom-
mendation. It is difficult to capture users’ true interest, be-
cause the check-in records and the unobserved ones 
couldn’t reflect whether the user really like the location. 

Therefore, Li et al. [20] proposed a unified model to learn 
users’ general tastes by fusing intrinsic and extrinsic inter-
ests. In this way, this model could learn fine-grained and 
interpretable interest of users. In this model, they first de-
fine locations that user can reach as their activity areas. 
Then they utilized the locations in activity area to learn 
user’s intrinsic interest with pairwise ranking method. 
Similarly, they utilized the locations outside activity area 
to capture users’ extrinsic interest.  

Except for check-in POI recommendation, some re-
searchers also focus on travel recommendation which rec-
ommends POIs or travel route for users. Jiang et al. [5] pro-
posed an author topic model-based collaborative filtering 
(ATCF) method to recommend POIs for users. This model 
learns users’ travel preference topics extracted from the de-
scription information of photos. To utilize the visual infor-
mation in photos for tour recommendation, Zhao et al. [21] 
proposed a Visual-enhanced Probabilistic Matrix Factori-
zation model (VPMF), which integrates visual features into 
the collaborative filtering model to learn user interests. 
Jiang et al. [22] proposed a personalized travel sequence 
recommendation method to recommend travel route for 
users. They fuse many contextual information include tags, 
cost, visiting time and season to mine the topical package 
space of users and routes. Then they obtained the ranked 
list of routes according to the similarity between user pack-
age and route package. And the ranked routes were further 
optimized by the similarity among users’ travel records. 

2.2 Next POI Recommendation 

The goal of next POI recommendation is to recommend 
POIs at next time based on the history records of users. It 
is crucial to take the sequential information into account. 
In the literature, effective methods have been widely ap-
plied for sequential data analysis and next item recommen-
dation. Generally, the widely used approaches of next POI 
recommendation are Markov Chains [23, 24] , ranking-
based methods [25, 26] and Recurrent Neural Networks 
(RNNs) based methods [27, 28]. 

2.2.1 Markov Chains-based Methods 

Markov Chains-based methods model the sequential corre-
lation between POIs based on users’ check-in sequences. A 
transition matrix over POIs is estimated which gives the 
probability of the next POIs based on the recent POIs visited 
by user. Due to the sparse transition data, it is difficult to 
estimate the transition probability in Markov Chain. FPMC 
[29] is a state-of-art method which apply personalized Mar-
kov chains and matrix factorization to learn the transition 
matrix and the general taste of users, respectively. They ap-
plied Matrix Factorization method to learn the general taste 
of a user by factorizing the matrix over observed user-item 
preferences. Then MC method was used to model the short-
term sequential behavior to predict the next action based on 
the recent actions of a user. However, the complex nature of 
user interest and the sparsity of check-in data present signif-
icant challenges to learn the long-term and short-term pref-
erence of users. Following this idea, Cheng et al. [9] com-
bined personalized Markov Chain and localized region con-
straint, and proposed a novel Matrix Factorization method, 
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namely FPMC-LR. However, in FPMC, each item was rep-
resented with two independent vectors, failing to model the 
latent relationship between them. Therefore, Feng et al. [11] 
proposed a personalized ranking metric embedding method 
(PRME) to effectively compute the location transition in 
Markov chain. This model leveraged metric embedding 
method which represents each POI as a single point in a la-
tent space to embody the latent relations of POIs. 

2.2.2 Ranking-based Methods 

In terms of ranking-based methods, Bayesian Personalized 
Ranking (BPR) [30] is a widely studied method with prom-
ising performance. It is a pairwise approach, which takes the 
implicit feedback as the relative preference rather than ab-
solute one. Zhao et al. [31] established a spatial-temporal la-
tent ranking (STELLAR) model to capture the impact of time 
information on next POI recommendation. For each POI, 
three latent vectors were used to describe the POI-user, POI-
time, and POI-POI interactions respectively. Then a rank-
ing-based pairwise tensor factorization framework was 
used to learn these feature vectors and the ranking list of 
next check in possibilities. However, the aforementioned 
method still overlooked category-level transition patterns 
which reflect human daily activities. Therefore, He et.al [32] 
proposed List wise Bayesian Personalized Ranking (LBPR) 
method to predict users’ next category. The candidate POIs 
were ranked based on the spatial influence and categorical 
influence. Besides, Jiao et al. [33] proposed a novel real-time 
next POI recommendation system. They integrated geo-
graphic and preference information to calculate a POI score 
to obtain the ranking list. 

2.2.3 RNNs-based Methods 

Recently, recurrent neural networks such as Long Short-
term Memory (LSTM) [27, 28] have demonstrated ground-
breaking performance on modeling sequential data [34-39]. 
RNNs have achieved much success in language modeling 
[40-42], machine translation [43, 44], speech recognition [45, 
46], image caption [47, 48], visual question answering [49, 
50] and recommendation [10, 51]. However, the original 
RNNs cannot well model the contextual information such 
as temporal, spatial information and user activity preference 
which play a key role in analyzing user behaviors. There-
fore, existing studies focus on exploiting users’ sequential 
preference on POIs by integrating various context infor-
mation into RNNs framework. 

 For example, Zhu et al. [52] proposed a time-LSTM 
which equipped LSTM with time gates to model time inter-
vals between users’ actions. It was good at modeling the or-
der information in sequential data. Besides, it can also model 
the interval information between locations. Wang et al. [55] 
proposed a  Similarity-based POI Embedding and recurrent 
Neural network with Temporal influence (SPENT). They or-
ganized the POIs into a similarity tree based on the embed-
ding vectors. Then LSTM added with temporal distance in-
fluence was used to learn users’ transition behaviors. Ex-
cepted for the temporal information, the spatial information 
is also essential to model users’ preference. For example, to 
model spatial and temporal information, Liu et al. [10] pro-
posed Spatial Temporal Recurrent Neural Networks (ST-

RNN) model. ST-RNN utilized RNN to capture the peri-
odical temporal contexts with time-specific transition ma-
trices. Meanwhile, this model incorporated distance-spe-
cific transition matrices to characterize dynamic properties 
of geographical properties of distances. To capture user in-
tentions effectively by fusing various contextual infor-
mation, Yao et al. [53] proposed a method named Semantics-
Enriched Recurrent Model (SERM) which modeled spatio-
temporal regularities, activity semantics, and user prefer-
ences in a unified way. Considering that users’ activity and 
location preferences interplay with each other, Liao et al. [54] 
proposed Multi-task Context Aware Recurrent Neural Net-
work (MCARNN) to leverage the spatial-activity topic for 
activity and location prediction. To integrate the context in-
formation and sequential pattern dynamically, the author 
proposed a novel Context Aware Recurrent Unit (CARU) as 
hidden layer unit.  

Recently, attention mechanism has been widely used in 
image caption, machine translation and recommendation. 
Ying et al. [56] proposed Sequential Hierarchical Attention 
Network(SHAN) which combined long-term and short-
term preferences to recommend next item for users. But they 
failed to consider the sequential behavior of users. Feng et 
al. [57] proposed an attentional recurrent model named 
DeepMove to predict human mobility. Firstly, a multi-
modal embedding module was designed to convert the 
sparse features (e.g., user, location, time of day) into dense 
representations. Then a historical attention module was 
used to capture the multi-level periodical nature of human 
mobility by jointly selecting the most related historical tra-
jectories under the current mobility status. 

3 PROBLEM DESCRIPTION 

Before describing our approach for next POI recommenda-
tion, we introduce the notations in this paper. Let

1 2{ , , , }MU u u u  be a set of users, and 1 2{ , , , }NL l l l
be a set of locations, where M and N are the total number 
of users and locations, respectively. In our work, the cate-
gories of locations are also considered. We denote 

1 2{ , , , }KC c c c  as the categories of all the locations, 
where K is the total number of categories. Obviously, dif-
ferent locations can belong to the same categories. There-
fore, the number of categories is smaller than the locations. 
For each user, we define the check-in sequence as follows. 

Definition 3.1 (check-in sequence). The check-in sequence 
for a user u U with n records is a time-ordered sequence

1 2{ , , , }u u u u

nQ q q q . Each record
u u

iq Q contains three attrib-
utes ( , , )i i il c t , where it  is the timestamp; il L  is the location 
visited by user u at time it ; ic C is the category of il . 

Definition 3.2 (long-term sequence). In this paper, we uti-
lize the data in training set to represent the long-term sequence for 
a user u, which is regarded as prior information of each user. We 
set the long-term sequence as 1 2{ , , , }u u u u

LL q q q  
Definition 3.3 (short-term sequence). Given the raw se-

quence 
uQ of user u, we split it into a set of sequences as short-

term sequences. Suppose the length of short-term sequence is k, we 
set the short-term sequence as 1 2{ , , , }u u u u

SS q q q  . 
Formally, given the historical check-in sequence 

1 2{ , , , }u u u u

nQ q q q  and the next check-in time 1nt   of a user 
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u, our goal is to recommend the next location 1nl  from the 
candidate location set L. In order to achieve our task, we 
learn the user’s long-term preference from the long-term 
sequence 1 2{ , , , }u u u u

LL q q q  and the short-term preference 
from the short-term sequence 1 2{ , , , }u u u u

SS q q q . Then we 
fuse them together to capture the preference for next loca-
tion. 

4 OUR MODEL 

In this section, we introduce our PLSPL model. Our model 
characterizes the long-term and short-term preference of 
users and fuse them into a unified framework. We first pre-
sent the overall architecture of our model. Then we de-
scribe each part in detail in the following sections. At last, 
we give the objective function and the training algorithm 
of our approach. 

4.1 The Overall Architecture 

The illustration of the overall framework is shown in Fig.2. 
The basic idea of our approach is to recommend a ranked 
list of POIs for users by jointly learning the long and short-
term preferences. More specifically, we learn the long-term 
preference of user u from the long-term sequence

1 2{ , , , }u u u u

LL q q q . The check-in POIs reflect the general 
taste of users. And the same POIs may have different im-
pacts for different users. Thus we use the attention mecha-
nism to learn the long-term preference of users similar to 
[56]. Firstly, we learn the latent vectors for user u and the 
POI iq  (which contain the location il , category ic  and the 
timestamp it ) in the embedding layer. Then we compute 
the importance ia  of each POI iq in the long-term se-
quence. Finally, we integrate the embedding of POIs to 
represent the long-term preference of users. Then the pref-
erence vector is fed into a fully connected layer to calculate 
the probability of next POI.  

Meanwhile, we utilize the short-term sequence

1 2{ , , , }u u u u

SS q q q of user u to capture the short-term infer-
ence of users’ activity patterns. In the short-term sequence, 
every factor ( , , )i i il c t of each record is essential to infer users’ 
intensions and preferences. Specially, the locations and 
categories have different influence on user’s preferences at 
a certain time. Thus, we feed them into two models respec-
tively to learn the location-level and the category-level 
preferences. Firstly, we learn the latent vectors for user u, 
locations il  and categories ic  and timestamps it  in the 
embedding layer. To better understand users’ check-in be-
haviors, we separately feed the concatenated embeddings 
of ( , , )i iu l t  and ( , , )i iu c t  into two LSTM models. Then the 
fully connected layers are used to calculate the probability 
of next POI. 

Finally, in the output layer, we combine the outputs of 
the long and short-term together to generate the final prob-
abilities of candidate POIs in the location set L. Specially, 
to learn the personized preference, we learn the weighted 
vectors for every user to balance the importance of the 
long-term, location-level and category-level preferences. 

4.2 The Long-term Preference Learning 

In this section, we introduce the learning method for long-
term preferences of users. The long-term sequence 

1 2{ , , , }u u u u

LL q q q of a user u reflects the general taste of the 
check-in behavior of user, thus we utilize it to learn the 
long-term preference. The main idea is to capture the dif-
ferent preferences of each POI in long-term sequence for 
every user. In this paper, we apply attention mechanism 
by similarity computation between the latent vectors of 
user u and POIs to learn the importance of each POI.  To 
learn the latent vector of each POI u u

iq L , different with 
[56] which only consider the location ID, we also consider 
the contextual information, such as the location ID il  , the 
category ic and the check-in time it . Then the importance of 
each POI is calculated with attention mechanism. The 
long-term preference of user u is designed as the weighted 
summarization of the corresponding concatenated vectors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig 2. The overall architecture of PLSPL model 
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of POIs in long-term sequence. The details of each part are 
shown as follows. 

4.2.1 The Embedding Layer 

For the long-term check-in sequence of user u

1 2{ , , , }u u u u

LL q q q , we learn the latent feature of user u and 

the contextual feature ( , , )i i il c t of every record u u

iq L . For 

each timestamp it , the original information is continuous, 

which is difficult to embed. Therefore, we map the raw 

timestamps into discrete hours. Then each hour is repre-

sented as a one-hot 24-dimensional vector, where the non-

zero entry denotes the index for the hour. Similarly, the 

user ID u, location il  and category ic are also represented 

as one-hot vectors, where the non-zero entry denotes the 

indexes. Intuitively, the sparsity increases with the number 

of the users, locations, categories and time, which will de-

grade the recommendation efficiency. Therefore, we trans-

form them into Du, Dl, Dc, Dt dimensional dense vectors, 

respectively. 

To learn the high-level representations of the POIs in 

long-term sequence of each user, we utilize the nonlinear 

transformation to capture the latent vector for each POI. 

Different with [56] which only learn the latent vectors of 

POI ID, we further consider the context information such 

as the category of POI and the check-in time. The fused fea-

ture of each POI is calculated as follows: 

 ( ).l c t

i l i c i t ih Wv W v Wv b     (1) 

where 
l

iv ,
c

iv and 
t

iv represent the embedding vectors of the 

tuple ( , , )i i il c t of every POI 
u u

iq Q in the long-term se-

quence uL . lW , cW , tW and b are the weights and corre-

sponding bias parameters.  is the nonlinear activation 

function. 

4.2.2 The Attention Mechanism 

To learn the long-term preferences of users, we leverage 
the attention mechanism to calculate the summarization of 
the contextual features of POIs in long-term sequence. We 
use the embeddings of users learned by embedding layer 
to measure the similarity between users’ preference and 
the latent vectors of check-in POIs. It is to calculate the im-
portance of each POI for each user. In this way, we can 
learn users’ long-term preference by fusing the latent vec-
tors of POIs with different weights. Here, the importance 
of each POI is calculated as the normalized similarity be-
tween latent vector of the user u and the POI iq : 
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,
exp( )
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i
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i
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u h
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 [ ; ; ].l c t

long j i i i

i

u a v v v  (3) 

where [ ; ; ]l c t

i i iv v v represents the concatenation of the embed-
ding vectors of the tuple ( , , )i i il c t of each POI. ia denotes the 
importance of each POI. longu is the final representation of 
the long-term preference of user u. Then  longu  is fed into a 
fully connected layer to calculate the probability of next 
POI i

LP .  

4.3 The Short-term Preference Learning 

We leverage LSTM model to learn the short-term prefer-
ences of users. The input sequences contain user ID, loca-
tion, category and time information. We first learn the la-
tent embedding vectors of them before modeling sequen-
tial preference. Considering that the location and category 
have different influences on the decisions of users, we feed 
them into two LSTM models without weights sharing. The 
details of embedding and LSTM layer are introduced in 
following parts. 

Firstly, for the check-in sequence of user u

1 2{ , , , }u u u u

SS q q q , the latent vectors of user u and the tu-
ple ( , , )i i il c t of every record 

u u

iq S  are represented in the 
same way as the section 4.2.1. 

To better learn the short-term preference of different us-
ers, we combine the embeddings of users and time as con-
text information for location-level and category-level se-
quence. With the context information, the latent vector of 
the same POI will be different and personalized for differ-
ent users. Then the combined vectors of locations ( , , )i iu l t

and categories ( , , )i iu c t are simultaneously fed into two 
LSTM models to learn the location-level and category-level 
preferences. By taking the location-level sequence as exam-
ples, we model user preference by the basic LSTM as fol-
lows: 
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where tx represents the input vector. [ ; ; ]u l tv v v  denotes the 
concatenation of the embeddings of users, locations and 
time. ti , tf , to represent the input, forget and the output 
gate of step t, which deciding what information we’re go-
ing to store, forget, and output, respectively. tc denotes the 
new candidate state vector of step t. is element-wise 
product of two vectors. 1t tf c   represents the retaining 
information obtained from the old state after forgetting the 
information of the old state 1tc   that we decide to forget. 

t ti c  represents the adding new information obtained 
from the new state tc that we decide to store. 

tc is the final state vector that combining the information 

of the old state 1tc   and new state tc . th  is the hidden out-

put vector that represents the preferences of users.  is a 

sigmoid layer which outputs a number between 0 and 1. 

iW ,
fW , oW and cW are the weights of gates. ib ,

fb , ob and 

cb are corresponding biases.  
Then the output vectors of the two LSTM models are fed 

into a fully connected layer to calculate the probability of 
next POI i

lP and i

cP . 

4.4 User-based Linear Combination Unit 

In real life, when deciding where to go, different users 
show different dependencies on long- and short-term pref-
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erences. However, many researchers in the literatures al-
ways neglect the important factor. To learn the different 
dependencies for different users, we integrate the results 
of long- and short-term preference learning modules with 
user-based linear combination unit in the output layer. 
Specifically, to learn the personized preferences for differ-
ent users, we learn the personized weights over long- and 
short-term modules for different users. The user prefer-
ences here are different from the preferences in the long-
term and short-term modules. They represent the person-
alized weights on the long- and short-term preferences. We 
compute the probabilities of next POI by linear combina-
tion of i

LP , i

lP  and i

cP  as follows: 

 ,u i u i u i

i L l cP P P P         (5) 

where i

LP  represents the output probability for next POI 

obtained from the long-term preference learning. i

lP  and 
i

cP  are the outputs of the location-based LSTM and cate-

gory-based LSTM, respectively. , ,u u u   are the specific 

weights for user u which will be learned by our model. The 

final output probability of POI i is determined as follows: 
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j

e
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   (6) 

where N is the total number of candidate POIs. e is the ex-
ponential function. 

4.5 Model optimization 

So far, we have introduced our solutions to capture users’ 
preferences in different level. Given a training set with 
samples, the loss function of the proposed model is defined 
as follows: 

 
2

1 1

1
log( ) .

N

ij ij

i j

J y O 


 

    

  (7) 

where J is the cross-entropy loss between the recommen-
dations of our model and the ground truth.   and N rep-
resent the numbers of the training set and the candidate 
POIs, respectively. 

ijy is an indicator variable representing 
whether the item is the ground truth . Its value is 1 when 
the POI j is the ground truth, otherwise it is 0. 

ijO is the 
output probability for POI j computed by our model.

2


is the regularization term to avoid overfitting.  controls 
the importance of regularization term. To minimize the ob-
ject function, we use Stochastic Gradient Descent (SGD) 
and the Back Propagation Through Time (BPTT) algorithm 
to learn the parameters. The detailed learning algorithm is 
presented in Algorithm 1. The inputs of our model are the  

long-term sequence 1 2{ , , , }u u u u

LL q q q and the short-term 

sequence of users 1 2{ , , , }u u u u

SS q q q . Firstly, we compute 

the latent vectors of user, location, category and timestamp 

via the embedding layer. Then the long-term preference is 

obtained according to equations (1) ~ (3) based on the long-

term sequence uL . Thus, the probability of next POI i

LP  is 

computed.  After that, the short-term preference is calcu-

lated according to equation (4) based on the short-term se-

quence u

iS . Then the probabilities of next POI i

lP and i

cP  

are computed by the location-level and category-level pref-

erence learning modules. At last, the final probability of 

POI i is obtained by fusing the outputs of long- and short-

term modules according to (5) ~ (6). 

 5 EXPERIMENTS 

In this section, we conduct experiments to evaluate the per-
formance of our proposed model PLSPL on two real-world 
datasets from Foursquare check-in data. We briefly intro-
duce the datasets firstly and then we evaluate the pro-
posed model with the related methods mentioned before. 
Furthermore, we give some discussions about our pro-
posed model. At last, we show the user study to explain 
the fusion weights of long- and short-term modules. 

5.1 Datasets 

We evaluate our model on public Foursquare check-in da-
tasets collected from New York City (NYC) and Tokyo 
(TKY) [1], which have been widely used in many related 
research papers. The check-in records are collected from 
April 2012 to February 2013. Each record contains user ID, 
POI ID, category name, GPS and timestamp. In following 
experiments, for each user, we set the records in chrono-
logical order based on the timestamp of each record. We 
split the records into several sessions keeping each session 
as the same length. Then we take the first 80% check-ins as 
the training set, the latter 20% as the test set. After data pre-
processing, the overall statistics is shown in Table 1. 

TABLE 1 

 DATASETS STATISTICS 

 #user #location #category #session 

NYC 1,083 38,333 398 11,415 
TKY 2,293 61,858 385 28,727 

5.2 Baselines 

Several baselines and state-of-the-art methods on next POI 
recommendation are used for comparison.  

MF [14] modeled the latent vectors of users and items by 
Matrix Factorization. 

FPMC [29] modeled both general taste and sequential be-
havior by integrating Matrix Factorization and  Markov 
Chain method. 

ST-RNN[10] modeled temporal and spatial contexts in 
recurrent neural network with time-specific and distance-

 Algorithm 1 

 Input: The long-term sequence 1 2{ , , , }u u u u

LL q q q and the 

short-term sequence 
1 2{ , , , }u u u u

SS q q q of users 

Output: Trained Model. 

Shuffle all the sequences 

Initialize the parameters   

Repeat 

for each input sequence do 

Compute long-term preference
longu according to 

equations (1) ~ (3)  

Compute the probability of next POI i

LP  
Compute the short-term preference according to equa-

tion (4)  

Compute the probability of next POI i

lP and i

cP  
Compute the final output iO according to (5)-(6) 

Update   with gradient descent according to (7) 

Until convergence 

 
 
 
 

 

1 

2 

 

3 

4 

 

5 

6 

7 

8 Output trained model 
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specific transition matrices. 
LSTM [27] applied recurrent neural network to learn us-

ers’ sequential behaviors based on the check-in location se-
quences.  

SHAN [56] applied a nonlinear two-layer hierarchical 
attention network to capture users’ dynamic preferences 
including long-term preference and short-term preference. 

DeepMove [57] learned user preference using recurrent 
neural networks for historical sequence and current se-
quence. Specially, an attention mechanism is used to com-
pute the similarity of current state and historical states. 

MCARNN [54] learned the spatial-activity topics as the 
latent factor to capture both users’ activity and location 
preferences. Besides, they proposed a novel Context 
Aware Recurrent Unit (CARU) to integrate the sequential 
dependency and temporal regularity of spatial activity 
topics. 

5.3 Evaluation Metrics 

In this paper, we use precision@k (P@k) and MAP@k to 
evaluate the performance of different methods. They are 
standard metrics for evaluating the quality of the ranked 
lists. The larger the value, the better the performance. For 
each user, P@k indicates that whether the ground truth 
POI appears in the top-k recommended POIs and MAP@k 
measures the order of our recommendation list. We use the 
two metrics because we want the recommended item to 
appear not only in the top K lists, but also at the top of the 
recommended list. We set k = 1, 5, 10, 20 in our experiments. 
Given a training set with   samples, the functions of the 
two metrics are defined as follows: 

 
1

P@ ,

i i

rec visited

i
i visited

S S
k
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  (8)
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where i

recS indicates the top-k recommended POIs. i

visitedS

indicates the ground truth POI visited by users. In our next 

POI recommendation task, the number of i

visitedS  is 1. The 
position in MAP@k represents the position of the correctly 
recommended POI in the ranked list. 

5.4 Parameter Setting 

The key parameters in our model include: the embedding 
dimensions of latent vectors for users Du, locations Dl, cat-
egories Dc and time Dt, the dimension of the hidden state 
and the batch size. Considering the vocabulary size of 
them on both datasets, we set the dimensions of locations 
and categories on NYC to be Dl =300, Dc =100 and Dl =350, 
Dc =120 respectively. We set the dimensions of users and 
time to be Du = 50, and Dt =20 respectively.  The batch size 
was set to be 32, and the learning rate is set to be 0.001. The 
length of the short-term sequence is 20. 

5.5 Performance Comparison 

In this sub-section, we compare the performance of our 

model with other methods. The performance of all methods 

evaluated by precision@k and MAP@k in NYC and TKY 

datasets is illustrated in Table 2. We can observe that: 
(1) Our model PLSPL outperforms the compared methods 

under all the metrics on the two datasets. Concretely, 
for P@k on the NYC dataset, our method is almost 12%-
26% higher than MF, 5%-10% higher than FPMC, 1%-
24% higher than SHAN, 4%-12% higher than LSTM, 
4%-15% higher than ST-RNN, 1.5%-4.2% higher than 
DeepMove and 0.8%-5.8% higher than MCARNN. For 
MAP@20, our method outperforms MF, FPMC, SHAN, 
LSTM, ST-RNN, DeepMove and MCARNN by 17.03%, 
8.19%, 7.57%, 5.84%, 6.66%, 2.01% and 1.87% respec-
tively. On the TKY dataset, our method is also higher 
than other methods under all metrics. This indicates 
that our model can better capture users’ long- and 
short-term preferences. Meanwhile, it also demon-
strates the effectiveness of considering the contextual 
information and personalized dependencies on differ-
ent parts for different users. 

TABLE 2 

PERFORMANCE COMPARISON WITH BASELINES 

Datasets Methods P@1 P@5 P@10 P@20 MAP@5 MAP@10 MAP@20 

NYC 

MF 0.0332 0.0859 0.1348 0.2013 0.0518 0.0571 0.0599 

FPMC 0.0892 0.2262 0.2943 0.3895 0.1363 0.1451 0.1483 

ST-RNN 0.1103 0.2171 0.2580 0.2882 0.1471 0.1614 0.1636 

LSTM 0.1147 0.2424 0.2916 0.3249 0.1629 0.1695 0.1718 

SHAN 0.1353 0.1779 0.1896 0.2019 0.1510 0.1526 0.1545 

DeepMove 0.1408 0.2946 0.3630 0.4052 0.1975 0.2071 0.2101 

MCARNN 0.1477 0.2909 0.3510 0.3894 0.2005 0.2088 0.2115 

PLSPL (ours) 0.1559 0.3252 0.3953 0.4475 0.2172 0.2266 0.2302 

TKY 

MF 0.0174 0.0550 0.0837 0.1439 0.0302 0.0335 0.0362 

FPMC 0.0655 0.1725 0.2385 0.2944 0.1057 0.1131 0.1128 

ST-RNN 0.1204 0.2437 0.2927 0.3421 0.1667 0.1733 0.1767 

LSTM 0.1339 0.2737 0.3295 0.3780 0.1868 0.1942 0.1975 

SHAN 0.1084 0.1527 0.1684 0.1813 0.1266 0.1287 0.1296 

DeepMove 0.1282 0.2488 0.2923 0.3289 0.1735 0.1794 0.1820 

MCARNN 0.1490 0.3128 0.3723 0.4292 0.2093 0.2174 0.2214 

PLSPL (ours) 0.1571 0.3321 0.4020 0.4664 0.2212 0.2307 0.2352 
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(2) SHAN shows an increase compared with MF and 
FPMC under P@1 and all MAP@k on the NYC dataset. 
That’s because FPMC combines the matrix factoriza-
tion and Markov chain in linear way. However, SHAN 
utilizes nonlinear model to better learn the user-item 
interaction.  

(3) LSTM shows better performance than FPMC, ST-RNN 
and SHAN on many metrics on both datasets. That’s 
because LSTM can better model sequential data than 
Markov Chain and RNN. Meanwhile, it demonstrates 
that the sequential information plays a very important 
role in next POI recommendation task.   

(4) DeepMove shows better performance on all the metrics 

than FPMC, ST-RNN, SHAN and LSTM on NYC da-

taset. That’s because DeepMove applies LSTM to model 

both long- and short-term preferences. Moreover, it lev-

erages attention mechanism to learn the attention 

weights between recent states and history states. How-

ever, it shows slightly poor performance than LSTM on  
TKY dataset. This phenomenon can be explained that 
the average number of check-in records in TKY dataset 
is larger than NYC. This will lead to a particularly long 
historical data, which is difficult for DeepMove to better 
capture history information. 

(5) The performance of MCARNN is better than the other 
baselines on the two datasets. That’s because MCARNN 
integrates the temporal and sequential contexts dynam-
ically. This model learns the weights of the sequential 
and the temporal context to capture the effect of the 
timespan between the target check-in time and the last 
time. Besides, they learn users’ activity and location 
preferences by multi-task learning. In this way, they can 
better capture the latent factor by the shared CARU 
layer. However, the MCARNN shows worse perfor-
mance compared with our method. That’s because the 
MCARNN ignores the long-term preference of users. 
And the category information is regarded as a side in-
formation. The latent vectors of the category, the loca-
tion and user are combined linearly to learn the sequen-
tial pattern. Compared with MCARNN, our method 
considers the long-term and short-term preferences of 
users. For short-term module, we learn the location-
level and category-level preferences by two parallel 
LSTM models to capture sequential behaviors. Specially, 
we also learn different weights for the long- and short-
term modules for different users to better learn users’ 
personized preferences. 

5.6 Discussions 

In addition to the performance comparison of the pro-
posed model with the existing MF, FPMC, ST-RNN, LSTM, 
SHAN, DeepMove and MCARNN, we also discuss some 
variant models to demonstrate the importance of each part 
of our model. We discuss six aspects in our experiments: 
(1) the impact of integration of long- and short-term mod-
ules; (2) the impact of factors in long-term module; (3) the 
impact of factors in short-term module; (4) the impact of 
the number of users’ historical records; (5) the impact the 
number of users’ current records; (6) the impact of the di-
mensions of locations and categories.  

5.6.1 The Impact of Integration of Long- and Short-
term Modules 

To demonstrate the impact of integration of long- and 
short-term modules in our model, we perform experiments 
with variant models as follows: 

1) long: variant model with only the long-term prefer-
ence learning module. 

2) short: variant model with only the short-term pref-
erence learning module.  

3) long+short: variant model with long- and short-
term preference learning module. Here we learn the 
same weights on the two parts for all users. 

4) long+short+attn (PLSPL): our PLSPL model con-
sidering both long- and short-term modules with 
user-based linear combination unit. 

Due to space limitation, we just investigate the perfor-
mance under P@1 and P@5 on NYC dataset. We show the 
performance of different factors under P@1 and P@5 on the 
two datasets in Fig.3. We can observe that compared with 
long-term preference learning, the short-term behavior 
shows better performance. We suppose that the long-term 
preference reflects the inherent characters of users which 
are difficult to represent essentially. While the short-term 
preference can be learned by sequential information of re-
cent behaviors. Besides, the integration of long- and short-
term preference learning modules shows better perfor-
mance than any single part under all metrics. It indicates 
that integrating users’ general taste and recent interest is 
crucial to better learn and understand user’s check-in be-
havior.  

Specially, our PLSPL model (long+short+attn) outper-
forms all the variant models.  It demonstrates the effective-
ness of user-based linear combination unit learning differ-
ent dependencies of long- and short-term modules. To in-
tuitively interpret the user-based linear combination unit, 
we compare the proportion of the weights in long- and 

 
 
 
 
 
 
 
 
 

 
 

Fig.4. The proportion of different parts on two datasets 

 
 
 

 

 

 

 

 
 

 

Fig.3. Discussions on the impact of integration of long- and short-term 

modules  
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short-term preference for all the users in NYC and TKY da-
tasets. As shown in Fig.4, in NYC datasets, 41% users de-
pend more on long-term preference, and 59% users depend 
more on short-term preference. In TKY datasets, 48% users 
depend more on long-term preference, and 52% users de-
pend more on short-term preference. We also give the user 
study in the following Section 5.7. 

5.6.2 The Impact of Factors in Long-term Module 

To better capture the long-term preference of users, we 
consider the category and check-in time of each location in 
long-term sequence. In this sub-section, we discuss the im-
pacts of the two contextual factors in long-term module. 
We perform experiments for variant models with only 
long-term module as follows: 

1) loc: variant model only considering the latent vec-
tors of locations.  

2) loc+cate: variant model further considering the cat-
egories of locations. 

3) loc+cate+time: the variant model considering the 
locations, categories and the check-in time. 

The performance of different variant models is shown in 
Fig.5. We can see that the variant models with contextual 
factors perform better than the model with only the location 
information. Moreover, loc+cate+time model shows the 
best performance and has a more significant improvement 
than loc+cate. It indicates that contextual information is 
helpful to understand and capture users’ long-term prefer-
ences.  

5.6.3 The Impact of the Factors in Short-term Module 

In short-term module, we apply two LSTM models to learn 
users’ location- and category-level preferences.  For each 
model, we also consider the latent vectors of users and 
check-in time to better learn users’ sequential preferences. 
Besides, we leverage user-based linear combination unit to 
learn different dependencies on the two sub-modules. Here, 
we discuss the impact of different factors for variant models 
with only short-term module as follows: 

1) loc: denotes the variant model considering the loca-
tion-level preference and the latent vectors of loca-
tions. 

2) cate: denotes the variant model considering the cat-
egory-level preference and the latent vectors of cat-
egories. 

3) context: denotes the variant model considering the 
latent vectors of users and check-in time. 

4) attn: denotes the variant model considering the user-
based linear combination unit. 

5) concate: denotes the variant model with the concate-
nation of the location, category and the context infor-
mation as the input of LSTM. 

6) “+” denotes we take another factor into considera-
tion. For example, loc + cate denotes the variant 
model considering the location-level and category-
level preferences. 

The performance of different factors is shown in Fig.6. 
We can see that the integration of location- and category-
level preference shows better performance than any single 
one. Moreover, the model considering contextual infor-
mation plays an important role in improving the perfor-
mance. It also demonstrates the effectiveness of the contex-
tual information. Besides, the model with user-based linear 
combination unit shows the best performance. It indicates 
that considering different dependencies on location- and 
category-level preferences is helpful for models with only 
short-term module. 

In addition, to further demonstrate the effectiveness of 
location-level and category-level preference learning, we 
compare our PLSPL method with another variant model 
which sets the concatenation features of location and cate-
gory as inputs in short-term module. From Fig.7 we can see 
that the performance of concatenation is worse than our 
proposed method. Once again, we demonstrate that the lo-
cation-based sequence and the category-based sequence 
bring different information for understanding users’ short-
term preferences. 

5.6.4 The Impact of the Number of Users’ Records 

In order to show the impact of the number of users’ records, 
we divide the test dataset into four groups according to the 
number of check-in records on NYC dataset as shown in 
Table 3. Because the minimum number of users’ records is 
100, we divide the users starting from 100. The “100-150” 
means the number of records between 100 and 150. ‘500+’ 
means the number of records more than 500. We can ob-
serve that the check-in number of most of the users is 

 
 
 

 
 
 

 
 

 

  
Fig.5. Discussions on the impact of contextual factors 

 
 
 
 
 
 
 

 
 

Fig.6. Discussions on the impact of factors in short-term module. 

 
 
 
 
 
 
 

 
 

Fig.7. Discussions on the impact of location-level and category-level 

preference learning 
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100~300. The performance of P@1 and P@5 for each group 
is shown in Fig.8. We can see that when the number of 
check-in records is less than 300, the performance will be 
better along with the increase of the check-in number. 
However, when the number is larger than 300, the perfor-
mance is decreased.  This phenomenon can be interpreted 
that when the number of users’ records is very large, the 
long-term sequences of users will also be longer. Thus, the 
general tastes of users will be more complicated and elu-
sive, leading it difficult to better capture users’ long-term 
preferences. 

5.6.5 The Impact of the Number of Users’ Short-term 
Records 

In our former experiments, we split users’ records into 
many sub-sequences with 20 records as short-term se-
quence. To show the impact of the number of users’ short-
term records, we investigate the performance of test da-
tasets under different lengths. Here we set the lengths of 
short-term sequences to be 1~19 with interval to be 1. To 
further demonstrate the effectiveness of our method, we 
compare the performance of our model with DeepMove. 
The results under P@1 and P@5 on NYC dataset are shown 
in Fig.9. We can observe that when the number of short-

term records is small, our model can still achieve consider-
able results. Besides, as the number increases, the perfor-
mance of our model under P@1 is significantly getting bet-
ter. However, the improvement of DeepMove is not so ob-
vious. For P@5, our method outperforms DeepMove on all 
numbers of users’ short-term records.  

5.6.6 The Impact of the Dimensions of Locations and 
Categories. 

The dimensions of latent vectors for POIs, categories and us-
ers are the most important parameters in our model. Due to 
space limitation, we just investigate the performance with 
respect to P@1 on NYC and TKY datasets. For each parame-
ter, we perform experiments with the others fixed on both 
datasets. Considering the total number of POIs, categories 
and users, we set the embedding dimensions of POIs and 
categories to be 150~500, 40~200 and 20~80, respectively. 

The results are shown in Fig.10. We can see that when the 
embedding size is too large or too small, the performance is 
not so good. The model performs best when the embedding 
size of POIs is 300 and 350 for the two datasets respectively. 
That’s because the total number of POIs are not the same for 
the two datasets. And we can observe that high dimensions 
perform better that low dimensions, that’s because high di-
mensions can better capture the characters of POIs. For the 
embedding size of categories, the best one is 100 and 120 for 
the two datasets. For the embedding size of users, the best 
one is 50 for the two datasets.  

 
 
 
 
 
 

 
 

 
    

Fig.8. Discussions on the impact of users’ records 

TABLE 3 

 THE NUMBER OF USER’S RECORDS ON NYC DATESET 

Numbers 100-150 151-200 201-300 300+ 

User count 518 243 154 157 

 
 
 
 
 
 
 

 
(a) 
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Fig.10. The P@1 under different dimensions of (a) locations (b) cate-

gories and (c) users 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig.9. Discussion on the impact of the number of users’ short-term 

records. 
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5.7 User Study 

To explain the weights of the long and short term preference 
to the final decision, we randomly select one user from our 
dataset. The user ID of the selected user is “2”. We recom-
mend the next POI at 15:54 on Jan10, 2013. Our model inte-
grates the long- and short-term preferences of the user. And 
the weights computed by our model are 0.63 and 0.37 for 
long- and short-term module. It indicates that the user 
shows more dependence on the long-term check-in histories. 
To intuitively interpret the meaning of the output weights, 
we select one sequence from his/her testing data as short-
term sequence. As shown in Fig.11(c), the target time of next 
POI is 15: 54.pm. Considering the time shift, we find the pos-
sible POIs From the short-term sequence at 14:00~16:00. 
From the black dashed arrows, we can observe that the user 
may check-in at 3819 (Department Store), 24537 (Gym/Fit-
ness Center), 12569 (Subway). However, from the analysis 
of the short-term sequence, we are not sure which one 
he/she will visit at next time. From the frequency analysis 
of the long-term items in Fig.11 (a) and (b), we can observe 
that the user mainly visits the Clothing Store, Gym/Fitness 
Center and Department Store at 14:00~16:00. And the most 
frequent POI is 24537, which is belonging to the Gym/Fit-
ness Center. Besides, the weights for long- and short-term 
modules computed by our model indicate that the user 
shows more dependence on the long-term module. There-
fore, our model recommend the 24537 (Gym/Fitness Center) 
for the next POI, which is in line with the ground truth. 

6 CONCLUSION AND FUTURE WORK 

In this paper, we propose a unified model jointly learning 
users’ long- and short-term preferences for next POI recom-
mendation problem. And we specially learn personalized 

weights over different parts. In long-term module, we char-
acterize contextual features of POIs and capture the long-
term preference via attention mechanism. In short-term 
module, we learn the location-level preference and cate-
gory-level preference by two parallel LSTM models. From 
the experiments, we observe that our model outperforms 
the state-of-the-art methods on real-world datasets in terms 
of precision and MAP. Besides, we demonstrate the im-
portance of each part of our model according to the variant 
models. In future work, we will incorporate more context 
information such as the social network and spatial infor-
mation into the model to further improve the next POI rec-
ommendation performance. 
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